PROGRAM DESCRIPTION

Electrical Engineering (power distribution, motors, generators) and Electronic Engineering (integrated circuits, digital and analog hardware, electromagnetic fields, communications, controls) require the understanding and application of electrical, electronic and magnetic phenomena.

The department offers a comprehensive program leading to a BS degree in Electrical and Electronic Engineering. Students receive a thorough grounding in mathematics and the basic sciences during their first four semesters. Engineering design and applications are stressed in upper division courses. Prospective students are urged to discuss their plans as early as possible with their high school or community college counselor and the Electrical and Electronic Engineering Department Chair, who will advise students individually.

In cooperation with the Department of Computer Science, a separate major in Computer Engineering is offered. Students deciding between Electrical and Electronic Engineering and Computer Engineering as majors should also refer to the Computer Engineering section of this catalog.

The department offers a master's degree program in Electrical and Electronic Engineering, with specialties in control systems, power systems, communications, digital systems, microwaves, and intelligent machines.

FEATURES

The BS degree in Electrical and Electronic Engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, MD 21202.

The major strengths of the Electrical and Electronic Engineering program lie in its faculty, the basic philosophy on which the curriculum is built, and the outstanding laboratory facilities in the engineering building. Faculty in the Electrical and Electronic Engineering department are active in curriculum development, scholarly and creative activities through funded research projects, and participation in professional technical societies. The curriculum is based on providing a sound engineering background with small class sizes.

The Electric Power Education Institute, housed within the department and supported by local industry, provides scholarships for students interested in power. It also provides short courses for local industry.

Students should consider summer employment in an industry related to Electrical and Electronic Engineering. The college's Career Development Center assists in securing summer employment with local industry.
A. Required Lower Division Courses (Pre-major)

Total units required for Pre-Major: 41

1. First Semester Freshman Year (18 units)
 (5) CHEM 001A* General Chemistry
 (3) CSC 025 Introduction to C Programming
 (4) MATH 030* Calculus I
 (6) General Education

2. Second Semester Freshman Year (17 units)
 (4) MATH 031* Calculus II (MATH 030)
 (4) PHYS 011A* General Physics: Mechanics (MATH 030, MATH 031)
 (9) General Education

3. First Semester Sophomore Year (18 units)
 (3) ENGR 070 Engineering Mechanics (PHYS 011A)
 (4) MATH 032 Calculus III (MATH 031)
 (4) PHYS 011C* General Physics: Electricity & Magnetism, Modern Physics (PHYS 011A, MATH 031)
 (4) EEE 064# Introduction to Logic Design
 (3) General Education

4. Second Semester Sophomore Year (15 units)
 (3) MATH 045 Differential Equations for Science & Engineering (MATH 031)
 (3) ENGR 017# Introductory Circuit Analysis (MATH 045, PHYS 011C, either concurrent, not both)
 (3) ENGL 020 Expository Writing (ENGL 001A with grade of “C-” or better)
 (6) General Education

* Indicates course which can also be used to meet General Education (GE) requirements. The designation “General Education course” denotes a course which meets GE requirements other than those which also serve as prerequisites to courses in the major. Students are expected to satisfy the requirements of the Accreditation Board for Engineering and Technology (ABET) as well as the University’s GE requirements. Consult the Department Chair for specific GE requirements.

Note: Courses may be interchanged between semesters to accommodate the student’s schedule, as long as prerequisites are observed.

B. Required Upper Division Courses (Major)

Students are not permitted to enroll in upper division courses until they have completed all lower division requirements in Section A and have filed a change of major form for Electrical and Electronic Engineering. It is imperative that students take the University’s Writing Proficiency Examination (WPE) during the first semester of the junior year, as it is a prerequisite to all laboratory courses after EEE 117.

1. First Semester Junior Year (18 units)
 (3) EEE 108 Electronics I (ENGR 017; Corequisite: EEE 108L, EEE 117)
 (1) EEE 108L Electronics I Laboratory (Corequisite: EEE 108)
 (3) EEE 117# Network Analysis (ENGR 017; Corequisite: EEE 064, EEE 117L)
 (1) EEE 117L Network Analysis Laboratory (Corequisite: EEE 117)
 (4) EEE 161 Transmission Line & Fields (MATH 032, MATH 045, PHYS 011C, ENGR 017 and CSC 025 or 3 units of Fortran or Pascal)
 (3) EEE 166 Physical Electronics (Corequisite: EEE 108)
 (3) ENGR 120 Probability & Random Signals (MATH 031)

2. Second Semester Junior Year (16 units)
 (4) EEE 109 Electronics II (EEE 108, EEE 108L, EEE 117, EEE 117L, WPE) OR
 EEE 141 Power System Analysis (Corequisite: EEE 130 AND)
 EEE 143 Energy System Laboratory (WPE; Corequisite: EEE 130, EEE 141)
 (3) EEE 130 Electromechanical Conversion (EEE 117)
 (4) EEE 174 Introduction to Microprocessors (EEE 064)
 (3) EEE 180 Signals & Systems (EEE 117)
 (2) ENGR 140 Engineering Economics (ENGR 017, ENGR 030 or CSC 130)

3. First Semester Senior Year (15 units)
 (3) EEE 184 Introduction to Feedback Systems (EEE 108, EEE 180)
 (3) EEE 185 Modern Communication Systems (EEE 180, Corequisite: ENGR 120)
 (2) EEE 192A* Electrical Power Design Project I (EEE 108, EEE 130, EEE 141, EEE 143, EEE 161, EEE 174, EEE 180; WPE, OC) OR
 EEE 193A** Product Design Project I (EEE 108, EEE 109, EEE 130, EEE 161, EEE 174, EEE 180, WPE, OC)
 (4) EEE Depth Requirement: Select one lecture course (3 units) and one lab course (1 unit) from one of the Depth Requirement Areas listed below.
 (3) General Education

4. Second Semester Senior Year (17 units)
 (2) EEE 192B* Electrical Power Design Project II (EEE 192A; Corequisites: EEE 142, EEE 144) OR
 EEE 193B** Product Design Project II (EEE 193A)
 (3) EEE Depth Requirement: Select one additional lecture course (3 units) from the same Depth Requirement Area as selected previously.
 (6) EEE Electives Requirement: Select two additional 3-unit lecture courses from any of the four areas listed below.
 (6) General Education

* Students planning to complete EEE 192A / EEE 192B series may use EEE 109 to meet depth/elective requirement.
** Students planning to complete EEE 193A / EEE 193B series may use EEE 141 and EEE 143 to meet depth/elective requirement.

Depth Requirement Areas and List of Electives

AREA 1: Analog/Digital Electronics

EEE 109 Electronics II
EEE 110 Advanced Analog Integrated Circuits
EEE 111 Advanced Analog Integrated Circuits Laboratory
EEE 153 Fabrication Semiconductor Devices/Sensors
The four selected areas are: Analog/Digital Electronics, control systems, communication engineering and power areas, providing our graduates depth in their area of interest. Seven of these units must be from within a selected elective area, accommodating this expansion and emphasizing hands-on experience through numerous laboratory courses.

ENGINEERING — ELECTRICAL & ELECTRONIC

AREA 2: Control Systems

EEE 187 Robotics
EEE 188 Digital Control Systems
EEE 189 Controls Laboratory

AREA 3: Communication Engineering

EEE 154 Communication Circuits Design
EEE 162 Applied Wave Propagation
EEE 163 Traveling Waves Laboratory
EEE 164 Introduction to Antennas
EEE 165 Introduction to Optical Engineering
EEE 167 Electro-Optical Engineering Laboratory
EEE 181 Introduction to Digital Signal Processing
EEE 183 Digital Communication System Design
EEE 186 Communication Systems Laboratory
EEE 196 Experimental Offerings
PHYS 106 Introduction to Modern Physics
PHYS 130 Acoustics

AREA 4: Power Engineering

EEE 131 Electromechanics Laboratory
EEE 135 Power System Relay Protection
EEE 141 Power System Analysis
EEE 142 Energy Systems Control and Optimization
EEE 143 Power Systems Laboratory
EEE 144 Electric Power Distribution
EEE 146 Power Electronics Controlled Drives
EEE 147 Power Electronics
EEE 148 Power Electronics Laboratory

Note: Other upper division courses in Engineering and Computer Science may be selected as elective lectures with prior approval of the student’s advisor.

ADDITIONAL INFORMATION

Development and Integration of Design

The field of Electrical Engineering continues to expand rapidly, requiring our graduates to apply their skills in new contexts and manage intelligently the consequences of their technical decisions. Thus, the number of critical topics to which the Electrical and Electronic Engineering graduate needs to be exposed is expanding. Our curriculum accommodates this expansion and emphasizes hands-on experience through numerous laboratory courses. The Electrical and Electronic Engineering program provides breadth (core courses), depth (elective sequence) and a culminating experience to practice the design knowledge gained through the curriculum. The program motivates students to appreciate the connectedness among abstract ideas, applications, their classes and their careers. The electrical engineering core is emphasized, providing students with a broad undergraduate electrical engineering education. At the senior level, the curriculum allows flexibility by offering 13 units of elective coursework. Seven of these units must be from within a selected elective area, providing our graduates depth in their area of interest.

Cooperative Education

The Electrical and Electronic Engineering Department encourages students to participate in the University’s Cooperative Education Program. They will then complete one or two six-month periods of full-time, off-campus work in their field during their upper division years. Employment with private industry or government agencies is arranged by the University’s Cooperative Education Program office. Students are paid by the employer. Participating students must enroll in EEE 195A-D, but units earned for Co-op work cannot be used to satisfy the requirements for a major. Students who satisfactorily complete two work periods are awarded a certificate. The Co-op experience will enhance the student’s employment prospects after graduation. Students interested the Cooperative Education Program should apply in the satellite office in Riverside Hall 2004 or the main office in Public Service Building 201. For information, call 278-7234.
GRADUATE PROGRAM

The Master of Science degree program in Electrical and Electronic Engineering is designed to provide students with advanced study in a variety of electrical and electronic engineering topics and opportunities to conduct independent research to broaden their professional scope. Scheduling of program offerings provide maximum flexibility, and culminating experience options allow for individual preferences.

All students complete a twelve-unit core of general requirements designed to provide a broad foundation to support elective concentrations. In consultation with the Graduate Coordinator and faculty advisors, students then focus their studies in one or more of the following areas, adapting to the needs and interests of the practicing engineer or post-graduate candidate:

- Microwaves, Circuits, Devices, Communications, Signals and Systems
- Intelligent Machine/Robotics and Controls
- Power Engineering
- Computer Engineering

Coordinated courses are offered in advanced microprocessors, electromagnetic theory and microwaves, lasers and fiber optics, semiconductor devices, robotics and intelligent machines, systems and control, networks, and communication systems. Other coordinated courses facilitate the study of estimation and stochastic control, advanced communications and signal processing, large interconnected power systems, power systems reliability and planning, and advanced design and organization of digital computer systems. The program is also sufficiently flexible to allow special independent studies of problems of current interest.

The department has a strong relationship with the local engineering community. Students of the program have access to the department laboratories and facilities and to the University computer services.

Admission Requirements

Admission as a classified graduate student in Electrical and Electronic Engineering requires:

- a BS in Electrical and Electronic Engineering or equivalent;
- at least a 3.0 GPA in the last 60 units of the BS in Electrical and Electronic Engineering or equivalent; and
- at least a 3.25 GPA in the Electrical and Electronic Engineering major or equivalent major.

Under special circumstances, a student who does not satisfy the Admission Requirements may be admitted as a conditionally classified graduate student. Deficiencies will be specified in the acceptance letter to the student and must be removed by the student before the student can become a classified graduate student.

A student registered as an unclassified graduate student should carefully note that graduate courses taken as an unclassified graduate or as an open university student cannot be used to improve the student’s grade point average for admittance to the Electrical and Electronic Engineering graduate program. Only undergraduate Electrical and Electronic Engineering courses can be taken or retaken to improve the GPA of the student for admittance to the graduate program.

Admission Procedures

Applications are accepted as long as room for new students exists. However, students are strongly urged to apply by April 1st for the following Fall or October 1st for the following Spring. All prospective graduate students, including CSUS graduates, must file the following with the Graduate Center:

- an application for graduate admission; and
- two sets of official transcripts from all colleges and universities attended, other than CSUS.

At the same time, students not meeting the above Admission Requirements should submit to the Electrical and Electronic Engineering Graduate Coordinator two letters of recommendation, Graduate Record Examination scores, and/or other evidence of their potential for successful graduate study in this program. Approximately six weeks after receipt of all items listed above, a decision regarding admission will be mailed to the applicant.

Advancement to Candidacy

By the end of the first semester, after admission to the program, each student is required to have a program of study evaluated and signed by a professor in the E&EE Department. Students will fill out a form (contract) outlining what courses they plan to take to complete the MS degree. This contract will be signed by the student and the faculty advisor and filed in the E&EE Department office.

In addition, each student must file an application for Advancement to Candidacy with the Graduate Center indicating a proposed program of graduate study for the completion of the MSEE. This procedure should begin as soon as the classified graduate student has:

- Removed any deficiencies in Admission Requirements, and
- Completed a minimum of 12 units in the graduate program with a minimum 3.0 GPA; at least nine units of the 12 units must be EEE 200 level courses.

Each student must be advanced to candidacy prior to registering for EEE 500.

Advancement to Candidacy forms are available in the Graduate Center and in the Electrical and Electronic Engineering Department.

Degree Requirements

The Master of Science in Electrical and Electronic Engineering requires completion of 30 units of coursework with a minimum 3.0 GPA. Specific degree requirements are:

A. Required Core Courses (12 units)

- (3) EEE 241 Linear Systems Analysis (EEE 180 or equivalent)
- (3) EEE 243 Applied Stochastic Processes (ENGR 120)
- (3) EEE 244 Numerical Analysis (EEE 180)
B. Electives (12-18 units)

Select 12-18 units from the following fields of study and, if they have not been used to satisfy the BS program requirements or MSEE admission requirements.

1. Microwaves, Circuits, Devices, Communications, and Signals and Systems
 - EEE 211 Microwave Engineering I (EEE 161)
 - EEE 212 Microwave Engineering II (EEE 211)
 - EEE 213 Microwave Devices & Circuits (EEE 162)
 - EEE 215 Lasers (EEE 180, EEE 161; or permission of instructor)
 - EEE 233 Advanced Digital Signal Processing (EEE 174, EEE 181; or equivalent)
 - EEE 235 Analog and Mixed Signal Integrated Circuit Design (EEE 109)
 - EEE 260 Statistical Theory of Communication (EEE 185)
 - EEE 261 Information Theory, Coding, and Detection (EEE 185)
 - EEE 267 Fiber Optic Communications (EEE 185 or instructor permission)
 - EEE 270 Advanced Semiconductor Devices

2. Intelligent Machines/Robotics and Controls
 - EEE 221 Machine Vision
 - EEE 222 Electronic Neural Networks
 - EEE 225 Advanced Robot Control (EEE 184 or equivalent)
 - EEE 242 Statistical Signal Processing
 - EEE 246 Advanced Digital Control (EEE 241)
 - EEE 247 Optimal LQG Control (EEE 241)
 - EEE 248 Adaptive Filtering & Control (EEE 241)
 - EEE 249 Advanced Topics in Control & Systems

3. Power Engineering
 - EEE 250 Analysis of Faulted Power Systems (EEE 130 or equivalent)
 - EEE 251 Power System Economics & Dispatch (EEE 141 or equivalent)
 - EEE 252 Power System Reliability & Planning (EEE 142 or equivalent)
 - EEE 254 Large Interconnected Power Systems (EEE 142)
 - EEE 256 Advanced Power Electronic System Applications
 - EEE 259 Advanced Topics in Power Systems (EEE 142)
 - EEE 296 Experimental Offerings in Electrical & Electronic Engineering (see Department Chair for current offerings)

4. Computer Engineering
 - CSC 242 Computer-Aided Design Methodology for Computer Systems (CSC 205)
 - CSC 275 Advanced Data Communication Systems (CSC 175, CSC 205, or CPE 175)
 - EEE 270 Advanced Semiconductor Devices
 - EEE 273 Hierarchical Digital Design Methodology (EEE 064 or equivalent)
 - EEE 280 Advanced Computer Architecture (CSC 205)
 - EEE 285 Micro-Computer System Design I (EEE 174 or CPE 185)
 - EEE 286 Micro-Computer System Design II (EEE 285 or CPE 186)
 - EEE 287 VLSI Design (EEE 161, CPE 151)
 - EEE 296 Experimental Offerings in Electrical & Electronic Engineering (see Department Chair for current offerings)

C. Culminating Requirement (2-5 units)

(2-5) EEE 500 Culminating Experience

Note: The student cannot register for the Culminating Experience until the student passes the Writing Proficiency Exam (WPE), and advances to candidacy. In subsequent semesters, students will enroll in RCE 599, Continuous Enrollment, after qualifications for enrollment is verified.

Before registering for EEE 500, students choosing Plan A, Master Thesis (5 units), or Plan B, Master Project (2 units), must submit a Proposed Topic Form with the department office.

Note: Selection of Plan A or Plan B requires the completion of EEE 201, Research Methodology (1 unit), in the program of graduate study.

Students opting for Plan C, Comprehensive Exam, must complete a total of 18 elective units and must take a two-step, comprehensive exam. The first exam is written and covers the material offered in the required core area (EEE 241, EEE 243, and EEE 244). This exam is administered once every semester. Students take the exam at the time of their advancement to candidacy (after passing the WPE and taking the three required core courses). The second exam is oral and covers an area in one of the elective fields of study. Students are responsible for selecting a committee of three professors from the chosen elective area and scheduling the oral exam.

As soon as possible after the student has registered for EEE 500, it is expected that the student will select a committee appropriate to the chosen plan of study. The Thesis Committee is to consist of the student’s Thesis Advisor, who is the Chairperson of the student’s Thesis Committee, and two other faculty members. The Project Committee is to consist of the student’s Project Advisor, who is the Chairperson of the student’s Project Committee, and one other faculty member. The committee members selected by the student must be approved by the Electrical and Electronic Engineering Department’s Graduate Coordinator.

The Thesis (Plan A) must be orally presented and defended, approved by the student’s Thesis Committee, and approved by the Electrical and Electronic Engineering Graduate Coordinator prior to submittal of the Thesis to the Graduate Center. The Project Report (Plan B) is to culminate in a report and a device or simulation which is then demonstrated to the student’s Project Committee. The Project Report must be approved by the student’s Project Committee and approved by the Electrical and Electronic Engineering Graduate Coordinator prior to submittal of the Project Report to the Graduate Center.

Students who elect Plan C and who fail the exam (either written or oral) a second time will not be allowed to continue with the Plan C option.

Note: Selection of Plan A or Plan B requires the completion of EEE 201, Research Methodology (1 unit), in the program of graduate study.

Before registering for EEE 500, students choosing Plan A, Master Thesis (5 units), or Plan B, Master Project (2 units), must submit a Proposed Topic Form with the department office.

Note: Selection of Plan A or Plan B requires the completion of EEE 201, Research Methodology (1 unit), in the program of graduate study.

Students opting for Plan C, Comprehensive Exam, must complete a total of 18 elective units and must take a two-step, comprehensive exam. The first exam is written and covers the material offered in the required core area (EEE 241, EEE 243, and EEE 244). This exam is administered once every semester. Students take the exam at the time of their advancement to candidacy (after passing the WPE and taking the three required core courses). The second exam is oral and covers an area in one of the elective fields of study. Students are responsible for selecting a committee of three professors from the chosen elective area and scheduling the oral exam.

As soon as possible after the student has registered for EEE 500, it is expected that the student will select a committee appropriate to the chosen plan of study. The Thesis Committee is to consist of the student’s Thesis Advisor, who is the Chairperson of the student’s Thesis Committee, and two other faculty members. The Project Committee is to consist of the student’s Project Advisor, who is the Chairperson of the student’s Project Committee, and one other faculty member. The committee members selected by the student must be approved by the Electrical and Electronic Engineering Department’s Graduate Coordinator.

The Thesis (Plan A) must be orally presented and defended, approved by the student’s Thesis Committee, and approved by the Electrical and Electronic Engineering Graduate Coordinator prior to submittal of the Thesis to the Graduate Center. The Project Report (Plan B) is to culminate in a report and a device or simulation which is to be demonstrated to the student’s Project Committee. The Project Report must be approved by the student’s Project Committee and approved by the Electrical and Electronic Engineering Graduate Coordinator prior to submittal of the Project Report to the Graduate Center.

Students who elect Plan C and who fail the exam (either written or oral) a second time will not be allowed to continue with the Plan C option.
LOWER DIVISION COURSES

EEE 064. Introduction to Logic Design. Covers the following topics: logic gates, binary number system, conversion between number systems, Boolean algebra, Karnaugh maps, combinational logic, digital logic design, flip-flops, programmable logic devices (PLDs), counters, registers, memories, state machines, designing combinational logic and state machines into PLDs, and basic computer architecture. Lab emphasizes the use of software equation entry design tools, the use of a schematic entry, and the use of a logic simulation design tool. Lab assignments are design-oriented. Cross-listed as CPE 064; only one may be counted for credit. Lecture three hours; laboratory three hours. 4 units.

EEE 064W. Introduction to Logic Design Workshop. Assists students in developing a more thorough understanding of logic simulation and logic design. Focus is on problem solving and design. Activity two hours. Corequisite: EEE 064. Cross-listed as CPE 064W; only one may be counted for credit. Graded Credit/No Credit. 1 unit.

EEE 096. Experimental Offerings in Electrical and Electronic Engineering. Proseminars devoted to subject matter not adequately covered elsewhere in the curriculum may be scheduled in response to proposals from faculty and students. May be repeated for credit with permission of advisor. 1-4 units.

UPPER DIVISION COURSES

All courses that have a laboratory component may require students to purchase an electronic component fee card or to purchase the parts elsewhere.

EEE 102. Analog/Digital Electronics. Introduction to analog/digital electronics, diodes, FET’s, BJT’s, DC biasing, VI characteristics, single-stage amplifiers, power supplies and voltage regulators, power electronic devices, OP-amps, active filters, A/D and D/A converters. PSPICE used extensively. Note: Cannot be taken for credit by E&E Majors. Prerequisite: ENGR 017. Corequisite: EEE 102L. 3 units.

EEE 102L. Analog/Digital Electronics Laboratory. Introduction to analog/digital electronics, diodes, FET’s, BJT’s, DC biasing, VI characteristics, single stage amplifiers, power supplies and voltage regulators, power electronic devices, OP-amps, active filters, A/D and D/A converters. PSPICE used extensively. Note: Cannot be taken for credit by E&E Majors. Prerequisite: ENGR 017. Corequisite: EEE 102. 1 unit.

EEE 108. Electronics I. Introduction to electronics, ideal OP-AMPS, BJTs, FETs, DC biasing, VI characteristics, single stage amplifiers, low frequency small signal models, power supplies and voltage regulation, PSPICE required. Prerequisite: ENGR 017. Corequisite: EEE 108L. EE 117. 3 units.

EEE 108L. Electronics I Laboratory. Characteristics and applications of OP-AMPS, rectifiers, BJTs and FETs. Introduction to GPIB, PSPICE and LabVIEW. Laboratory three hours. Corequisite: EEE 108. 1 unit.

EEE 109. Electronics II. Differential and multistage amplifiers, high frequency models (BJTs and FETs), feedback and sensitivity, power amplifiers, oscillators and waveform shaping circuits. Advanced use of PSPICE. Lecture three hours; laboratory three hours. Prerequisite: EEE 108, EEE 108L, EEE 117, EEE 117L and successful completion of WPE. 4 units.

EEE 110. Advanced Analog Integrated Circuits. MOS and Bipolar transistor models, feedback and sensitivity, behavioral modeling of OP-AMPS, OP-AMP design. Introduction to switched capacitor active filters. Design and implementation of IC active filters and special function ICs. Prerequisite: EEE 109, EEE 180. 3 units.

EEE 117. Network Analysis. Review of Sinusoidal steady state, phasors, complex power, three phase power, mutual inductance, series and parallel resonance. Introduction to application of Laplace transforms in network analysis, transfer functions, Bode plots, Fourier series, two-port circuits. Prerequisite: EEE 109. Corequisite: EEE 117. 3 units.

EEE 117L. Networks Analysis Laboratory. Introduces fundamental laboratory techniques while demonstrating the concepts introduced in the EEE 117 lecture. The computer simulation language PSPICE is introduced and applied. Laboratory three hours. Corequisite: EEE 117. 1 unit.

EEE 130. Electromechanical Conversion. Magnetic circuits and principles of electromechanical energy conversion, DC machines, state equations, terminal characteristics, transformers, AC machines, terminal characteristics of synchronous machines, stability considerations. Induction machine theory. Introduction to energy sources including conventional and nuclear power plants. Prerequisite: EEE 117. 3 units.

EEE 131. Electromechanics Laboratory. Direct current motor and generator characteristics, three phase synchronous motor and synchronous generator characteristics, single phase power transformer short circuit and no-load tests, frequency changer tests and tests on DC and AC machine models, potential and current transformers. Prerequisite: EEE 117. Corequisite: EEE 130, passing score on WPE. 1 unit.

EEE 135. Power System Relay Protection. Principles of relay techniques (classical and solid state), current and potential transformers and their application in relaying technique, overcurrent, differential, impedance, frequency, overvoltage and undervoltage relays, relay protection of overhead and underground power lines, generators, transformers, motors, buses and computer applications in relay protection. Prerequisite: EEE 130. 3 units.

EEE 141. Power System Analysis. Characteristics of power system components; power system planning; transmission line parameters and the steady-state performance of transmission lines; disturbance of the normal operating conditions, symmetrical components and sequence impedances; analysis of balanced and imbalanced faults; and a brief review of protection systems. Corequisite: EEE 130. 3 units.

EEE 142. Energy Systems Control and Optimization. Energy systems and ecology, load flow studies, sensitivity; optimum allocation and dispatching; optimal dynamic system control; modern stability studies. Students will use MATLAB to solve problems. Prerequisite: EEE 130. 3 units.

EEE 143. Power System Laboratory. Fundamentals of power system instruments. Experimental study of three-phase circuits, synchronous generators, transformers and power transmission lines. Simulation of power system dynamics and transients by computer. Prerequisite: Passing score on the WPE. Corequisite: EEE 130, EEE 141. 1 unit.
EEE 144. Electric Power Distribution. Operation and design of utility and industrial distribution systems including distribution system planning; load characteristics; application of distribution transformers; design of subtransmission lines, distribution substations, primary systems, secondary systems; application of capacitors; voltage regulation and reliability. Prerequisite: EEE 130. 3 units.

EEE 146. Power Electronics Controlled Drives. Course will review thyristors, controlled rectifiers, DC chopper and inverters and pulse width modulation methods including space vector method. Control of DC drives and methods of control of induction synchronous motors including flux-vector methods and computer simulations will be studied. Prerequisite: EEE 108, EEE 130. 3 units.

EEE 147. Power Electronics. Power semiconductors diodes, thyristors, and converters and their characteristics will be introduced. Silicon controlled rectifier circuits, both single and three phase, will be studied. AC voltage controllers, choppers and inverters modeling, analysis and their switching characteristics will be studied. Applications in UPS systems, reactive power control and power supplies will be briefly introduced and studied. Prerequisite: EEE 108. 3 units.

EEE 153. Fabrication of Semiconductor Devices/Sensors. An introduction to semiconductor fabrication processes for CMOS, BJT, BICMOS and sensor applications. Oxidation, diffusion, ion implantation, photolithography, metallization, wet and dry chemistry are studied in relation to fabrication of devices. Simulations are introduced as tools for processing. 3 units.

EEE 154. Communication Circuits Design. Design techniques for solid-state transmitter and receiver circuits: RF amplifiers, sine wave oscillators, phase-locked loops, mixers, IF filters, detectors, linear power amplifiers, tuned power amplifiers. Prerequisite: EEE 108, EEE 185. 3 units.

EEE 162. Applied Wave Propagation. One-dimensional wave equation in electromagnetics and acoustics. Wave velocity, wavelength and directivity. Pointing vector and sound intensity. Low and high frequency equivalent circuits of transmission lines. Impedance, attenuation and standing wave measurements on transmission lines with losses and negligible loss. Rectangular and circular hollow waveguides. Optical Waveguides. Prerequisite: EEE 117, EEE 161. 3 units.

EEE 163. Traveling Waves Laboratory. Selected experiments in the transmission and reflection of waves in coaxial lines and waveguides. Antenna impedance and pattern measurements. Laboratory three hours. Prerequisite: EEE 117, a passing score on the WPE. Corequisite: EEE 162. 1 unit.

EEE 164. Introduction to Antennas. Application of potential functions to obtain fields of infinitesimal dipoles, long antennas, and arrays. Radiation resistance and gain. Aperture antennas and Babinet's principle. Mutual impedance effects. High gain and broadband antennas. Prerequisite: EEE 161. 3 units.

EEE 166. Physical Electronics. Semiconductor physics, atomic models and crystal structures. Quantum theory, energy bands, motion of charge carriers, minority/majority carrier profiles and pn junctions. Manufacturing processes for and operating characteristics of diodes, bipolar transistors and field effect devices. Corequisite: EEE 108. 3 units.

EEE 167. Electro-Optical Engineering Lab. Course provides senior level undergraduates with hands-on experience in optical engineering and design. Experiments involving laser characteristics, spectral radiometry, diffraction, polarization, modulation of light, holography and spatial filtering will be performed. Laboratory three hours. Prerequisite: EEE 161, EEE 180, a passing score on the WPE. Corequisite: EEE 165. 1 unit.

EEE 167. Introduction to Microprocessors. Topics include: microcomputer systems, microprocessor architecture, machine and assembly language programming, timing operations, bus arbitration and exception processing logic, addressing modes, parallel and serial ports, memory, assemblers and development systems. The lab uses development systems and target systems in the Computer Engineering Laboratory to assemble, link, test and debug and run various assignments. Lecture three hours; laboratory three hours. Prerequisite: Junior standing, EEE 064. 4 units.

EEE 180. Signals and Systems. Rigorous development of the fundamental relationships governing time-domain and frequency-domain analysis of linear continuous-time and discrete-time systems. Topics include Fourier, Laplace and z-transforms, sampling, theorem, modulation, system stability, and digital filters. Prerequisite: EEE 117. 3 units.

EEE 181. Introduction to Digital Signal Processing. Course focuses on the application of linear systems theory to design and analysis of digital signal processing systems. Discrete systems, the z transform, and discrete Fourier transform are reviewed. Design of infinite impulse response filters, finite impulse response filters, and digital spectral analysis systems is presented. Computer simulation is used to study the performance of filters and spectral analysis systems. Signal processing architectures are introduced. Lecture three hours. Prerequisite: EEE 064 or equivalent, EEE 180. 3 units.

EEE 184. Introduction to Feedback Systems. Feedback analysis methods including signal flowgraphs, Bode diagrams, and root locus are introduced. System stability tests and design techniques via Nyquist and Routh are derived. System type, frequency response, and signal following error are discussed. Included are application of feedback concepts to the design of
typical systems such as electro-mechanical servos, feedback amplifiers, op-amps, and phase locked loops. **Prerequisite:** EEE 108, EEE 180. 3 units.

EEE 185. Modern Communication Systems. Review of signal and system analysis, sampling theorem and Nyquists criteria for pulse shaping, signal distortion over a channel, study of digital and analog communication systems, line coding, signal to noise ratios, performance comparison of various communication systems. **Prerequisite:** EEE 180. **Corequisite:** ENGR 120. 3 units.

EEE 186. Communication Systems Laboratory. Experimental study of modulation and demodulation in AM, FM, and digital communication systems, A/D and D/A conversion, measurement of power spectra, noise characterization in frequency domain. **Prerequisite:** EEE 117, a passing score on the WPE. **Corequisite:** EEE 185. 1 unit.

EEE 187. Robotics. Lecture introduces principles of robotics and design of robot systems. Course includes robot architectures, sensing position/velocity, digital circuit noise, actuator and path control, robot coordinate systems, kinematics, differential motion, computer vision/architectures, and artificial intelligence. Laboratory will apply lecture theory in design experiments utilizing five degree-of-freedom robots, an industrial robot, and vision systems. **Prerequisite:** EEE 180 or equivalent, or instructor permission. 4 units.

EEE 188. Digital Control System. Course intended to present treatment of the classical digital control system with an introduction to modern digital control system in the state space. Z-transform as applied to discrete-time systems with transformation from the s-plane to the z-plane. Analysis of digital control systems using Nyquist and Bode plots and root-locus. Stability analysis of digital systems using Jury test, Routh Criterion, Nyquist and Bode plots. Design using root-locus and Bode plots introduced. Introduction to state-space and pole assignment. Finite-word length effects. MATLAB applications. **Prerequisite:** EEE 184. 3 units.

EEE 189. Controls Laboratory. Study of linear and nonlinear control problems on analog and digital computers. Examples of analysis and compensation for closed loop systems. **Prerequisite:** EEE 117, a passing score on the WPE. **Corequisite:** EEE 184, 1 unit.

EEE 192A. Electrical Power Design Project I. Concentrates on the planning, research and design aspects of electric power systems, including generation, transmission and distribution systems. Emphasis is placed on design philosophies, problem definition, project planning and budgeting, written and oral communication skills, teamwork, development of specifications and effective utilization of available resources. Lecture one hour; laboratory three hours. **Prerequisite:** EEE 108, EEE 130, EEE 141, EEE 143, EEE 161, EEE 174, EEE 180, passing score on the WPE, GE Oral Communication requirement. 2 units.

EEE 192B. Electrical Power Design Project II. A continuation of EEE 192A. Students are expected to continue the power engineering design project begun the previous semester in EEE 192A. Final results of the project report will be presented orally to the class and invited faculty in a publicized seminar. Lecture one hour; laboratory three hours. **Prerequisite:** EEE 192A. **Corequisite:** EEE 142, EEE 144. 2 units.

EEE 193A. Product Design Project I. Concentrates on the planning and design of electronic engineering devices, systems and software. Emphasis is placed on design philosophies, problem definition, project planning and budgeting, written and oral communication skills, teamwork, development of specifications, utilization of computer aided design systems, and effective utilization of available resources. Lecture one hour; laboratory three hours. **Prerequisite:** EEE 108, EEE 109, EEE 130, EEE 161, EEE 174, EEE 180, passing score on the WPE, GE Oral Communication requirement. 2 units.

EEE 193B. Product Design Project II. Concentrates on design projects begun by the previous semester design teams in EEE 193A. The hardware will be completed, tested for the meeting of specifications and other requirements, and redesigned if necessary. Required software will be written, debugged and incorporated in a written report. The final results of the team project will be presented orally to the class and invited faculty in a publicized seminar. Lecture one hour; laboratory three hours. **Prerequisite:** EEE 193A. 2 units.

EEE 195. Fieldwork in Electrical and Electronic Engineering. Supervised work experience in Electrical and Electronic Engineering with public agencies or firms in the industry. Admission to course requires approval of a petition by the supervising faculty member and Department Chair. May be repeated for credit. Graded Credit/No Credit. 1-3 units.

EEE 195A. Professional Practice. Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science. Requires satisfactory completion of the work assignment and a written report. **Note:** Units earned cannot be used to satisfy major requirements. **Prerequisite:** instructor permission. Graded Credit/No Credit. 1-12 units.

EEE 195B. Professional Practice. Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science. Requires satisfactory completion of the work assignment and a written report. **Note:** Units earned cannot be used to satisfy major requirements. **Prerequisite:** instructor permission. Graded Credit/No Credit. 1-12 units.

EEE 195C. Professional Practice. Supervised employment in a professional engineering or computer science environment. Placement arranged through the College of Engineering and Computer Science. Requires satisfactory completion of the work assignment and a written report. **Note:** Units earned cannot be used to satisfy major requirements. **Prerequisite:** instructor permission. Graded Credit/No Credit. 1-12 units.

EEE 196. Experimental Offerings in Electrical and Electronic Engineering. Proseminars devoted to subject matter not adequately covered elsewhere in the curriculum may be scheduled in response to proposals from faculty and students. May be repeated for credit with permission of advisor. 1-4 units.

EEE 197. Special Problems. Individual projects or directed reading. **Note:** Open only to students who appear qualified for independent work. Approval of the faculty sponsor and the academic advisor must be obtained before registering. May be repeated for credit. Graded Credit/No Credit. 1-3 units.

EEE 198. Experimental Offerings in Electrical and Electronic Engineering. Proseminars devoted to subject matter not adequately covered elsewhere in the curriculum may be scheduled in response to proposals from faculty and students. May be repeated for credit with permission of advisor. 1-4 units.

EEE 199. Special Problems. Individual projects or directed reading. **Note:** Open only to students who appear qualified for independent work. Approval of the faculty sponsor and the academic advisor must be obtained before registering. May be repeated for credit. Graded Credit/No Credit. 1-3 units.

GRADUATE COURSES

In addition to those graduate courses previously listed under the general title of the engineering, the following courses are of special interest to the electrical and computer engineering student. **Note:** It is required that all students enrolled in 200-level Electrical and Electronic Engineering courses be classified or conditionally classified graduate students, or have instructor permission.
EEE 201. Research Methodology. Research methodology, problem formulation and problem solving. Collective and individual study of selected issues and problems relating to fields of study in the Electrical and Electronic Engineering Graduate Program. Orientation to the requirements for Masters Thesis or Project in Electrical Engineering. Prerequisite: Fully completed graduate standing. Graded Credit/No Credit. 1 unit.

EEE 211. Microwave Engineering I. Review of Maxwell's equations. Radiation, propagation and scattering of waves in unbounded systems. Transmission line theory; quarter-wave, binomial and CW transmission lines; single and double-stub tuning; microstrip and stripline design. Modes in waveguides of various geometries; waveguide excitations, discontinuities and junctions. Applications of scatter (S-parameters) and ABCD matrices to microwave network theory. Prerequisite: EEE 161. 3 units.

EEE 212. Microwave Engineering II. Passive microwave components; power dividers, couplers and hybrids. Microwave filter design, periodic structures, image parameter and insertion loss methods for designing filters. Design of ferromagnetic components, isolators, phase shifters and circulators. Noise in microwave devices. Prerequisite: EEE 211. 3 units.

EEE 213. Microwave Devices and Circuits. Theory and application of electromagnetic radiation at microwave frequencies; study of microwave impedance and power measurement and characteristics of microwave circuit components, and electronic devices. Prerequisite: EEE 162. 3 units.

EEE 215. Lasers. Review of electromagnetic theory. Ray tracing in an optical system, Gaussian beam propagation. Resonant optical cavities, study of excitation and lasing mechanisms in gas and semiconductor lasers. General characteristics and design of CW/ Q-switched and Q-switched lasers. Waveguide techniques. Prerequisites: EEE 180 and EEE 161 or instructor permission. 3 units.

EEE 221. Machine Vision. Introduces the student to fundamental digital imaging processing concepts and their application to the fields of robotics, automation, and signal processing. Topics include: digital image filters, two-dimensional transforms, boundary descriptors, Hough transform, automated visual inspection techniques, vision for robot control, 3-D vision, and hardware architectures to support vision. 3 units.

EEE 222. Electronic Neural Networks. Current neural network architectures and electronic implementation of neural networks are presented. Basics of fuzzy logic is covered. Application software will be used to simulate training. Testing of various neural net architectures. Learning strategies such as back-propagation, Kohonen, Hopfield and Hamming algorithms will be explored. A final project requires the student to design, train and test a neural network for electronic implementation that solves a specific practical problem. 3 units.

EEE 225. Advanced Robot Control. Introduction to robot kinematics and dynamics. Pedestal control and dynamics followed by a comprehensive treatment of robot control. Topics include: independent joint control, multivariable control, force control, feedback linearization, real-time parameter estimation, and model-reference adaptive control. Prerequisite: EEE 184 or equivalent. 3 units.

EEE 233. Advanced Digital Signal Processing. Advanced signal processing topics include: multirate signal processing, adaptive filter design and analysis, spatial filtering and the application of FIR filter theory to beamforming. Applications of digital signal processing in communication systems, radar systems, and imaging systems are covered. Hardware and software topics, including current products and the incorporation of VLSI are included. Lecture. Prerequisite: EEE 174, EEE 181 or equivalent. 3 units.

EEE 241. Linear Systems Analysis. Analysis of linear systems in the state-space. System realization and modeling, solutions of linear systems, stability including the method of Lyapunov, controllability and observability, state feedback and observers for both continuous and discrete-time systems. Familiarity with MATLAB is required. Prerequisite: EEE 180 or equivalent. 3 units.

EEE 242. Statistical Signal Processing. Introduces the student to modern statistical approaches for solving electronic system noise problems. A few of the topics covered are: Stochastic processes, Wiener and Kalman filters, linear prediction, lattice predictors and singular-value decomposition. 3 units.

EEE 243. Applied Stochastic Processes. Introduction to sequence of random variables and multivariable distributions; models of stochastic processes; stationary stochastic processes and their applications; Markov processes, Markov chains, continuous Markov chains; renewal processes; birth-death processes; time-series applications in stochastic processes in filtering, reliability and forecasting, prediction and control. Prerequisite: ENGR 120. 3 units.

EEE 244. Numerical Analysis. Computational methods for solving problems in engineering analysis. Topics include variational methods, finite-difference analysis, optimization methods, and matrix methods. Course focuses predominantly on applications of the methods, and students are required to solve real-world, engineering problems on the computer. Prerequisite: EEE 180. 3 units.

EEE 249. Advanced Topics in Control and Systems. Topics from recent advances in control, systems and robotics control selected from IEEE Journals and related professional publications. 3 units.
EEE 250. Analysis of Faulted Power Systems. Computation of phase and sequence impedances for transmission lines, machines, and transformers; sequence capacitance of transmission lines; applications of symmetrical components; changes in symmetry; analysis of simultaneous faults by two-port network theory and matrix transformations; analytical simplification for shunt and series faults; solution of the generalized fault diagrams; computer solution methods using the admittance and impedance matrices. Prerequisite: EEE 130 or equivalent. 3 units.

EEE 251. Power System Economics and Dispatch. Study of a number of engineering and economic matters involved in planning, operating, and controlling power generation and transmission systems in electric utilities. Effects of hydro and nuclear plants on system economics. Economic and environmental constraints. Theoretical developments and computer methods in determining economic operation of interconnected power systems with emphasis on digital computers. Prerequisite: EEE 141 or equivalent. 3 units.

EEE 252. Power System Reliability and Planning. Power system economics, generation, transmission and distribution reliability. Production costing and generation planning, transmission planning. Prerequisite: EEE 142 or equivalent. 3 units.

EEE 254. Large Interconnected Power Systems. Computer control, optimization and organization of large power systems. Load and frequency control, voltage control, load flow and contingency studies. Introduction to state estimation and load forecasting. Prerequisite: EEE 142. 3 units.

EEE 256. Advanced Power Electronic Systems Applications. Neural networks, fuzzy logic and artificial intelligence applications in power electronics including software applications. Recent advances in PV Power Electronic Control Systems. HVDC control systems. SVC and Solid State Control in HV Systems. Power quality, its monitoring and control. Computer modeling using EMTP and PSPICE will be emphasized. Recent research papers will be studied. 3 units.

EEE 259. Advanced Topics in Power Systems. Topics from recent advances in Electrical Power Engineering selected from IEEE Journal on “Power Systems” and “Power Systems Delivery.” Prerequisite: EEE 142. 3 units.

EEE 261. Information Theory, Coding, and Detection. Signal space concepts, optimum M-ary communication systems, MAP estimation of continuous waveforms, information theory, coding. Prerequisite: EEE 185. 3 units.

EEE 267. Fiber Optic Communications. Fundamentals of modern microwave communication systems, sources detectors and optical fibers. Study of dispersion in Step Index, Graded Index and Single Mode Optical Fibers. Intensity Modulated Direct Detection systems (IMDD) and Coherent Fiber Optic Systems (COPOCS). Performance evaluation and design considerations. Wavelength division multiplexing, Local Area Networks, optical amplifiers and photonic switching. Prerequisite: EEE 185 or instructor permission. 3 units.

EEE 270. Advanced Semiconductor Devices. Course covers semiconductor device modeling, including the application of the continuity equation and Poisson's equation to abrupt and graded p/n junctions, semiconductor/metal contacts, junction field effect transistors (JFET), metal-oxide-semiconductor transistors (MOSFET), and bipolar junction transistors (BJT). Special topics include compound semiconductor devices and heterostructures. 3 units.

EEE 273. Hierarchical Digital Design Methodology. A hierarchical digital design course that includes: State machine design, Programmable Logic Devices, digital simulation techniques, digital interface, design with ASIC (Application Specific Integrated Circuits), programmable Gate, and designing with Gas high speed logic devices. Problems with EMI, RFI and EMC will be presented along with design guidelines. Lecture three hours. Prerequisite: EEE 064 or equivalent. Cross-listed as CSC 273; only one may be counted for credit. 3 units.

EEE 280. Advanced Computer Architecture. Course introduces computer classification schemes, structures of uni- and multi-processor systems, parallelism in uniprocessor systems, design and performance analysis of pipelined and array processors; survey and analysis of interconnection networks and parallel memory organizations; programming issues of multiprocessor systems; and fault tolerant computing and design for testability. Prerequisite: CSC 205 or instructor permission. Cross-listed as CSC 280; only one may be counted for credit. 3 units.

EEE 285. Micro-Computer System Design I. Course focuses on: design of the microprocessor based computer system, study of bus structures, interrupt schemes, memory interfacing, timing, bus arbitration, system architecture, data communications, introduction to multiprocessor systems, and software development. Prerequisite: EEE 174 or CPE 185. 3 units.

EEE 286. Micro-Computer System Design II. Includes: 32-bit Microprocessor Architectures, design of 32-bit computer systems, memory and peripheral interfacing, DMA and MMU controllers, coprocessor and multi-microprocessor systems, electromagnetic interference, methods of eliminating interference, shielding grounding, balancing, filtering, isolation, separation, orientation, cancellation techniques and cable design. Prerequisite: CPE 186 or EEE 285. 3 units.

EEE 287. VLSI Design. Focus on integrated circuit design-for-test-techniques; semiconductor reliability factors and screening; semiconductor fabrication processes, device physics and related performance limitations; quantifying cost/quality tradeoffs; IC manufacturing flows and high-accuracy parametric test methods. Prerequisite: EEE 166 and CPE 151. 3 units.

EEE 296. Experimental Offerings in Electrical and Electronic Engineering. Proseminars devoted to subject matter not adequately covered elsewhere in the curriculum may be scheduled in response to proposals from faculty or students. May be repeated for credit with permission of advisor. 1-4 units.

EEE 299. Special Problems. Open to qualified students who wish to pursue problems of their own choice. Projects must have approval and supervision of a faculty advisor. Graded Credit/No Credit. 1-3 units.

EEE 500. Culminating Experience. Completion of a thesis, project or comprehensive examination. Credit given upon successful completion of one of the following plans: Plan A: master’s Thesis, 5 units; Plan B: Master’s Project, 2 units; or Plan C: Comprehensive Examination. Note: Open only to graduate students who have advanced to candidacy and secured the permission of the graduate coordinator. Prerequisite: Passing score on the WPE. Graded Credit/No Credit. 1-6 units.
Biomedical engineering is that branch of engineering which focuses on the solution of problems involving both living and physical systems. CSUS offers the courses listed below in biomedical engineering:

BME 120. Electronic Instrumentation. Junior level course introducing electronic instrumentation design and systems concepts using examples from both biomedical engineering and other engineering application areas. Lecture/discussion covers the areas of systems design, electronic circuit analysis and design, analog and digital recording systems, sensors for transducers, signal conditioning, statistical methods, selected transducer/measurement system design examples and electrical safety design considerations and device testing. The laboratory features experience with time and frequency domain measuring instruments; transducers for displacement, force, light intensity, ionic current, temperature, pressure, and flow; analog signal conditioning and analog/digital conversion; use of National Instruments LabVIEW software for virtual instrument design. Lecture three hours; laboratory three hours. Prerequisite: ENGR 017. Cross-listed as EEE 120; only one may be counted for credit. 4 units.

BME 196. Experimental Offerings in Biomedical Engineering. When a sufficient number of qualified undergraduate students apply, one of the staff will conduct a pro-seminar in some topic of biomedical engineering. May be repeated for credit with permission of advisor. 1-4 units.

GRADUATE COURSES

BME 211. Advanced Topics in Biomedical Signal Acquisition and Processing. Guided experience in the development and virtual instrument implementation of signal acquisition, processing, and display for selected biomedical applications. Signals associated with the central nervous system (EEG, evoked potentials) and the cardiovascular (ECG, VCG) and respiratory (pressures, flows, volumes) systems will be considered. Prerequisite: BME 120 or equivalent; BME 210, BME 230. 2 units.

BME 230. Engineering Applied to Bioelectric Phenomena. In-depth study of engineering techniques applied to modeling, information acquisition, and control of bioelectric phenomena. Coverage includes electrode physical chemistry, electrical properties of muscle and nerve, volume conductor fields, bioelectric generators, diagnostic and therapeutic instrumentation, implanted devices, information processing, and electrical safety. Lecture two hours, laboratory three hours. Prerequisite: BIO 131, BME 210, or equivalent. 3 units.

BME 231. Engineering Applied to Homeostatic Transport Systems. Biomedical engineering applications to the systems responsible for homeostasis in the living organism. System structure and function. Diagnostic instrumentation and techniques. Therapeutic methods for replacing inadequate function and for driving the system to desired states. Applications to the mammalian respiratory, fluid balance, and thermoregulatory systems. Lecture two hours; laboratory three hours. Prerequisite: BIO 131 or equivalent; BME 210. 3 units.

BME 260. Biomedical Engineering Practice. Issues relating to the practice of biomedical engineering in clinical engineering (management of medical technology) and medical device development/manufacturing environments. Topics include overview of the health care environment, federal and state regulations, example applications and processes used, project and business management techniques, legal and professional issues, impact of computer systems in clinical information systems, medical devices, imaging and telepresence, and future directions. Lecture three hours. Prerequisite: Graduate standing or instructor permission. 3 units.

BME 261. Ergonomics. Ergonomics of technology in the workplace and medical and assistive devices. Human performance, including disability and aging. Assessment of physical and cognitive capabilities and workloads imposed by the human-technology interface. Body position, motion, eye position, forces, electromyogram, electrocardiogram, electroencephalogram, skin conductivity, respiration, blood pressure, pulse oximetry, blood glucose, and metabolism. Computer simulation, virtual instrumentation. For graduate students in biological sciences, nursing, physical education, physical therapy, psychology, and speech pathology and audiology. Lecture three hours. 3 units.

BME 295. Fieldwork in Biomedical Engineering. Supervised work experience in an area of biomedical engineering. Prerequisite: Instructor and advisor permission. Graded Credit/No Credit. 1-6 units.

BME 296. Experimental Offerings in Biomedical Engineering. When a sufficient number of qualified students are interested, one of the staff will conduct a seminar in some advanced topic in biomedical engineering. May be repeated for credit with permission of advisor. 1-4 units.

BME 299. Special Problems. Graduate research. Note: Approval must be obtained from the faculty member under whom the work is to be conducted and from the student's advisor. Graded Credit/No Credit. 1-3 units.

BME 500. Master's Thesis. Credit given upon successful completion of a thesis approved for the master's degree. Note: Open only to the graduate student who has advanced to candidacy for the master's degree and who secures the permission of the chair of his/her thesis committee. Should be taken in final two semesters prior to completion of all requirements for the degree. Graded Credit/No Credit. 1-3 units.